Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 137(7): 1415-1423, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28259683

RESUMO

Olumacostat glasaretil (OG) is a small molecule inhibitor of acetyl coenzyme A (CoA) carboxylase (ACC), the enzyme that controls the first rate-limiting step in fatty acid biosynthesis. Inhibition of ACC activity in the sebaceous glands is designed to substantially affect sebum production, because over 80% of human sebum components contain fatty acids. OG inhibits de novo lipid synthesis in primary and transformed human sebocytes. TrueMass Sebum Panel analyses showed a reduction in saturated and monounsaturated fatty acyl chains across lipid species, including di- and triacylglycerols, phospholipids, cholesteryl esters, and wax esters in OG-treated sebocytes. There was no shift to shorter acyl chain lengths observed, suggesting that the fatty acid chain elongation process was not affected. OG is a pro-drug of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid and was designed to enhance delivery in vivo. Topical application of OG but not 5-(tetradecyloxy)-2-furoic acid significantly reduced hamster ear sebaceous gland size, indicating that this pro-drug approach was critical to obtain the desired activity in vivo. High-performance liquid chromatography analyses of hamster ear extracts showed that OG treatment increased ACC levels and the ratio of acetyl-CoA to free CoA in these animals, indicating increased fatty acid oxidation. These changes are consistent with ACC inhibition. Matrix-assisted laser desorption/ionization imaging showed that OG applied onto Yorkshire pig ears accumulated in sebaceous glands relative to the surrounding dermis. Sebaceous gland ACC represents an attractive therapeutic target given its central role in formation of sebum, a key factor in acne pathogenesis.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Acne Vulgar/tratamento farmacológico , Glândulas Sebáceas/metabolismo , Sebo/efeitos dos fármacos , Tretinoína/administração & dosagem , Acne Vulgar/metabolismo , Acne Vulgar/patologia , Administração Cutânea , Animais , Cricetinae , Modelos Animais de Doenças , Humanos , Ceratolíticos/administração & dosagem , Pró-Fármacos , Glândulas Sebáceas/efeitos dos fármacos , Glândulas Sebáceas/patologia , Sebo/metabolismo
2.
J Biol Chem ; 291(45): 23490-23505, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621312

RESUMO

Cardiac ryanodine receptor (Ryr2) Ca2+ release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca2+ flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca2+ signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca2+-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca2+ dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.


Assuntos
Sinalização do Cálcio , Glucose/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Deleção de Genes , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Proteoma , Piruvatos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
Diabetologia ; 58(5): 1100-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25715699

RESUMO

AIMS/HYPOTHESIS: Leptin has profound glucose-lowering effects in rodent models of type 1 diabetes, and is currently being tested clinically to treat this disease. In addition to reversing hyperglycaemia, leptin therapy corrects multiple lipid, energy and neuroendocrine imbalances in rodent models of type 1 diabetes, yet the precise mechanism has not been fully defined. Thus, we performed metabolic analyses to delineate the downstream metabolic pathway mediating leptin-induced glucose lowering in diabetic mice. METHODS: Mice were injected with streptozotocin (STZ) to induce insulin-deficient diabetes, and were subsequently treated with 20 µg/day recombinant murine leptin or vehicle for 5 to 14 days. Energy-yielding substrates were measured in the liver and plasma, and endogenous glucose production was assessed by tolerance to extended fasting. RESULTS: STZ-leptin-treated mice developed severe hypoketotic hypoglycaemia during prolonged fasting, indicative of suppressed endogenous ketone and glucose production. STZ-leptin mice displayed normal gluconeogenic and glycogenolytic capacity, but had depleted circulating glycerol and NEFA. The depletion of glycerol and NEFA correlated tightly with the kinetics of glucose lowering in response to chronic leptin administration, and was not mimicked by single leptin injection. Administration of glycerol acutely reversed fasting-induced hypoglycaemia in leptin-treated mice. CONCLUSIONS/INTERPRETATION: The findings of this study suggest that the diminution of circulating glycerol reduces endogenous glucose production, contributing to severe fasting-induced hypoglycaemia in leptin-treated rodent models of type 1 diabetes, and support that depletion of glycerol contributes to the glucose-lowering action of leptin.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glicerol/sangue , Hipoglicemia/metabolismo , Leptina/uso terapêutico , Fígado/metabolismo , Animais , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Diabetes Mellitus Experimental/metabolismo , Glicerol/farmacologia , Insulina/sangue , Leptina/farmacologia , Fígado/efeitos dos fármacos , Camundongos
4.
J Biol Chem ; 288(26): 18975-86, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23678000

RESUMO

Ca(2+) fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca(2+) flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca(2+) and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy. Dramatic metabolic reprogramming was evident at the transcriptional level via Sirt1/Foxo1/Pgc1α, Atf3, and Klf15 gene networks. Ryr2 loss also induced a non-apoptotic form of programmed cell death associated with increased calpain-10 but not caspase-3 activation or endoplasmic reticulum stress. Remarkably, cRyr2KO mice rapidly exhibited many of the structural, metabolic, and molecular characteristics of heart failure at a time when RYR2 protein was reduced 50%, a similar degree to that which has been reported in heart failure. RYR2-mediated Ca(2+) fluxes are therefore proximal controllers of mitochondrial Ca(2+), ATP levels, and a cascade of transcription factors controlling metabolism and survival.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Alelos , Animais , Apoptose , Autofagia , Morte Celular , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transcrição Gênica
5.
J Biol Chem ; 285(42): 32606-15, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693577

RESUMO

Elevated extracellular lipids, such as the free fatty acid palmitate, can induce pancreatic beta cell endoplasmic reticulum (ER) stress and apoptosis, thereby contributing to the initiation and progression of type 2 diabetes. ATP-citrate lyase (ACLY), a key enzyme in cellular lipid production, was identified as a palmitate target in a proteomic screen. We investigated the effects of palmitate on ACLY activity and phosphorylation and its role in beta cell ER stress and apoptosis. We demonstrated that treatment of MIN6 cells, mouse islets and human islets with palmitate reduced ACLY protein levels. These in vitro results were validated by our finding that islets from high fat-fed mice had a significant decrease in ACLY, similar to that previously observed in type 2 diabetic human islets. Palmitate decreased intracellular acetyl-CoA levels to a similar degree as the ACLY inhibitor, SB-204990, suggesting a reduction in ACLY activity. ACLY inhibitors alone were sufficient to induce CCAAT/enhancer-binding protein homologues protein (CHOP)-dependent ER stress and caspase-3-dependent apoptosis. Similarly, even modest shRNA-mediated knockdown of ACLY caused a significant increase in beta cell apoptosis and ER stress. The effects of chemical ACLY inhibition and palmitate were non-additive and therefore potentially mediated by a common mechanism. Indeed, overexpression of ACLY prevented palmitate-induced beta cell death. These observations provide new evidence that ACLY expression and activity can be suppressed by exogenous lipids and demonstrate a critical role for ACLY in pancreatic beta cell survival. These findings add to the emerging body of evidence linking beta cell metabolism with programmed cell death.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Palmitatos/farmacologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Animais , Linhagem Celular , Coenzima A/química , Coenzima A/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tapsigargina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...